
 UNIT – V

 Object Oriented Software Engineering

Object Oriented Software Engineering (OOSE) is a software design

technique that is used in software design in object-oriented programming.

OOSE is developed by Ivar Jacobson in 1992. OOSE is the first object-oriented

design methodology that employs use cases in software design. OOSE is one of the

precursors of the Unified Modeling Language (UML)

Classes and objects are fundamental building blocks of an Object – Oriented

Software Engineering. We organize software as a collection of discrete objects that

incorporate both data structures and behaviours.

Object – Oriented Analysis : Object Oriented Analysis (OOA) is the first

technical activity performed as part of object oriented software engineering. OOA

introduces new concepts to investigate a problem. It is based in a set of basic

principles, which are as follows-

1. The information domain is modeled.

2. Behavior is represented.

3. Function is described.

4. Data, functional, and behavioral models are divided to uncover greater detail.

5. Early models represent the essence of the problem, while later ones provide

implementation

details.

The purpose of any analysis activity in the software life-cycle is to create a model

of the system's functional requirements that is independent of implementation

constraints.

The main difference between object-oriented analysis and other forms of analysis

is that by the object-oriented approach we organize requirements around objects,

which integrate both behaviors (processes) and states (data) modeled after real

world objects that the system interacts with. In other or traditional analysis

methodologies, the two aspects: processes and data are considered separately. For

example, data may be modeled by ER diagrams, and behaviors by flow

charts or structure charts.

Object – Oriented Design: In the object-oriented design method, the system

is viewed as a collection of objects (i.e., entities). The state is distributed among

the objects, and each object handles its state data. For example, in a Library

Automation Software, each library representative may be a separate object with its

data and functions to operate on these data. The tasks defined for one purpose

cannot refer or change data of other objects. Objects have their internal data which

represent their state. Similar objects create a class. In other words, each object is a

member of some class. Classes may inherit features from the superclass.

The different terms related to object design are:

1. Objects: All entities involved in the solution design are known as objects.

For example, person, banks, company, and users are considered as objects.

Every entity has some attributes associated with it and has some methods to

perform on the attributes.

2. Classes: A class is a generalized description of an object. An object is an

instance of a class.

3. Messages: Objects communicate by message passing. Messages consist of

the integrity of the target object, the name of the requested operation, and

any other action needed to perform the function.

4. Abstraction: Abstraction is the removal of the irrelevant and the

amplification of the essentials.

5. Encapsulation: Encapsulation is also called an information hiding concept.

The data and operations are linked to a single unit. Encapsulation not only

bundles essential information of an object together but also restricts access

to the data and methods from the outside world.

6. Inheritance: OOD allows similar classes to stack up in a hierarchical

manner where the lower or sub-classes can import, implement, and re-use

allowed variables and functions from their immediate superclasses.This

property of OOD is called an inheritance.

7. Polymorphism: OOD languages provide a mechanism where methods

performing similar tasks but vary in arguments, can be assigned the same

name. This is known as polymorphism, which allows a single interface is

performing functions for different types.

Testing : Software testing is a process of identifying the correctness of software

by considering its all attributes (Reliability, Scalability, Portability, Re-usability,

Usability) and evaluating the execution of software components to find the

software bugs or errors or defects.

Types of Software testing

1. Manual Testing: The process of checking the functionality of an application

as per the customer needs without taking any help of automation tools is known as

manual testing. While performing the manual testing on any application, we do not

need any specific knowledge of any testing tool, rather than have a proper

understanding of the product so we can easily prepare the test document.

Manual testing can be further divided into three types of testing, which are as

follows:

o White box testing

o Black box testing

2. Automation testing: Automation testing is a process of converting any

manual test cases into the test scripts with the help of automation tools, or any

programming language is known as automation testing. With the help of

automation testing, we can enhance the speed of our test execution because here,

we do not require any human efforts. We need to write a test script and execute

those scripts

Black – box testing: It is carried out to test functionality of the program. It is

also called ‘Behavioral’ testing. The tester in this case, has a set of input values and

respective desired results. On providing input, if the output matches with the

desired results, the program is tested ‘ok’, and problematic otherwise.In this testing

method, the design and structure of the code are not known to the tester, and

testing engineers and end users conduct this test on the software.

White – box testing: It is conducted to test program and its implementation, in

order to improve code efficiency or structure. It is also known as ‘Structural’

testing.

In this testing method, the design and structure of the code are known to the tester.

Programmers of the code conduct this test on the code.The below are some White-

box testing techniques:

 Control-flow testing - The purpose of the control-flow testing to set up test

cases which covers all statements and branch conditions. The branch

conditions are tested for both being true and false, so that all statements can

be covered.

 Data-flow testing - This testing technique emphasis to cover all the data

variables included in the program. It tests where the variables were declared

and defined and where they were used or changed.

Testing Levels

Testing itself may be defined at various levels of SDLC. The testing process runs

parallel to software development. Before jumping on the next stage, a stage is

tested, validated and verified.

Testing separately is done just to make sure that there are no hidden bugs or issues

left in the software. Software is tested on various levels –

Unit testing: While coding, the programmer performs some tests on that unit of

program to know if it is error free. Testing is performed under white-box testing

approach. Unit testing helps developers decide that individual units of the

program are working as per requirement and are error free.

Integration testing: Even if the units of software are working fine individually,

there is a need to find out if the units if integrated together would also work

without errors. For example, argument passing and data updation etc.

System testing: The software is compiled as product and then it is tested as a

whole. This can be accomplished using one or more of the following tests:

 Functionality testing - Tests all functionalities of the software against the

requirement.

 Performance testing - This test proves how efficient the software is. It

tests the effectiveness and average time taken by the software to do desired

task. Performance testing is done by means of load testing and stress testing

where the software is put under high user and data load under various

environment conditions.

 Security & Portability - These tests are done when the software is meant

to work on various platforms and accessed by number of persons.

Acceptance testing: When the software is ready to hand over to the customer it

has to go through last phase of testing where it is tested for user-interaction and

response. This is important because even if the software matches all user

requirements and if user does not like the way it appears or works, it may be

rejected.

 Alpha testing - The team of developer themselves perform alpha testing by

using the system as if it is being used in work environment. They try to find

out how user would react to some action in software and how the system

should respond to inputs.

 Beta testing - After the software is tested internally, it is handed over to the

users to use it under their production environment only for testing purpose.

This is not as yet the delivered product. Developers expect that users at this

stage will bring minute problems, which were skipped to attend.

Regression testing: Whenever a software product is updated with new code,

feature or functionality, it is tested thoroughly to detect if there is any negative

impact of the added code. This is known as regression testing.

